论文标题

Wasserstein学习确定点过程

Wasserstein Learning of Determinantal Point Processes

论文作者

Anquetil, Lucas, Gartrell, Mike, Rakotomamonjy, Alain, Tanielian, Ugo, Calauzènes, Clément

论文摘要

确定点过程(DPP)作为离散子集选择的优雅概率模型受到了极大的关注。 DPP学习的大多数先前工作都集中在最大似然估计(MLE)上。虽然有效且可扩展,但MLE方法并不能利用任何子集相似性信息,并且可能无法恢复离散数据的真实生成分布。在这项工作中,通过得出DPP采样算法的可区分放松,我们提出了一种学习DPPS的新方法,可以最大程度地减少模型和由观察到的子集组成的数据之间的瓦斯汀距离。通过对现实世界数据集的评估,我们表明,与使用MLE训练的DPP相比,我们的Wasserstein学习方法在生成任务上提供了显着提高的预测性能。

Determinantal point processes (DPPs) have received significant attention as an elegant probabilistic model for discrete subset selection. Most prior work on DPP learning focuses on maximum likelihood estimation (MLE). While efficient and scalable, MLE approaches do not leverage any subset similarity information and may fail to recover the true generative distribution of discrete data. In this work, by deriving a differentiable relaxation of a DPP sampling algorithm, we present a novel approach for learning DPPs that minimizes the Wasserstein distance between the model and data composed of observed subsets. Through an evaluation on a real-world dataset, we show that our Wasserstein learning approach provides significantly improved predictive performance on a generative task compared to DPPs trained using MLE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源