论文标题

使用LSTM网络模块化多目标跟踪

Modular Multi Target Tracking Using LSTM Networks

论文作者

Verma, Rishabh, Rajesh, R, Easwaran, MS

论文摘要

传感器检测的关联和跟踪过程是提供情境意识的关键要素。当方案中的目标是密集的并且表现出较高的机动性时,多目标跟踪(MTT)成为一项艰巨的任务。解决此类NP-HARD组合优化问题的常规技术涉及多个复杂模型,并且需要对参数进行乏味的调整,因此未能在计算约束中提供可接受的性能。本文提出了一种使用传感器测量值的模型,用于空降目标跟踪系统的自由端到端方法,通过使用深度学习和内存进行多个目标跟踪的所有关键要素 - 关联,预测和过滤。结合的具有挑战性的任务是使用双向长短期内存(LSTM)执行的,而使用LSTM模型进行过滤和预测。所提出的模块化块可以独立训练并用于多种跟踪应用中,包括非合作(例如雷达)和合作传感器(例如AIS,IFF,ADS-B)。这样的模块化块还增强了深度学习应用的解释性。结果表明,所提出的技术的性能优于与相互作用的多个模型(JPDA-IMM)滤波器相互作用的技术概率数据关联的常规状态。

The process of association and tracking of sensor detections is a key element in providing situational awareness. When the targets in the scenario are dense and exhibit high maneuverability, Multi-Target Tracking (MTT) becomes a challenging task. The conventional techniques to solve such NP-hard combinatorial optimization problem involves multiple complex models and requires tedious tuning of parameters, failing to provide an acceptable performance within the computational constraints. This paper proposes a model free end-to-end approach for airborne target tracking system using sensor measurements, integrating all the key elements of multi target tracking -- association, prediction and filtering using deep learning with memory. The challenging task of association is performed using the Bi-Directional Long short-term memory (LSTM) whereas filtering and prediction are done using LSTM models. The proposed modular blocks can be independently trained and used in multitude of tracking applications including non co-operative (e.g., radar) and co-operative sensors (e.g., AIS, IFF, ADS-B). Such modular blocks also enhances the interpretability of the deep learning application. It is shown that performance of the proposed technique outperforms conventional state of the art technique Joint Probabilistic Data Association with Interacting Multiple Model (JPDA-IMM) filter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源