论文标题

用于光伏面板的可解释的初期故障检测系统

Explainable Incipient Fault Detection Systems for Photovoltaic Panels

论文作者

Sairam, S., Srinivasan, Seshadhri, Marafioti, G., Subathra, B., Mathisen, G., Bekiroglu, Korkut

论文摘要

本文提出了可解释的故障检测和诊断系统(XFDDS),用于PV面板中的初期故障。 XFDDS是一种混合方法,结合了基于模型和数据驱动的框架。 PV面板的基于模型的FDD缺乏在低辐照度条件下用于检测初期断层的高保真模型。为了克服这一点,提出了一种新型的基于辐照度的三二极管模型(IB3DM)。这是一个九个参数模型,即使在低辐照度条件下也提供更高的准确性,这是检测噪声中小断层的重要方面。为了利用PV数据,由于能够检测出初期故障的能力,因此使用了极端梯度提升(XGBoost)。缺乏解释性,示例实例的特征可变性以及错误的警报是数据驱动的FDD方法的挑战。这些缺点是通过XGBOOST和IB3DM的杂交克服的,并使用可解释的人工智能(XAI)技术来克服这些缺点。为了结合XGBoost和IB3DM,提出了一个故障 - 签名度量,该指标有助于减少错误警报,并触发有关检测出发故障的解释。为了提供解释性,开发了可解释的人工智能(XAI)应用。它使用局部可解释的模型 - 不合理解释(LIME)框架,并为数据实例提供了分类器输出的说明。这些解释有助于实地工程师/技术人员进行故障排除和维护操作。使用有关不同PV技术的实验来说明所提出的XFDD,我们的结果证明了感知的好处。

This paper presents an eXplainable Fault Detection and Diagnosis System (XFDDS) for incipient faults in PV panels. The XFDDS is a hybrid approach that combines the model-based and data-driven framework. Model-based FDD for PV panels lacks high fidelity models at low irradiance conditions for detecting incipient faults. To overcome this, a novel irradiance based three diode model (IB3DM) is proposed. It is a nine parameter model that provides higher accuracy even at low irradiance conditions, an important aspect for detecting incipient faults from noise. To exploit PV data, extreme gradient boosting (XGBoost) is used due to its ability to detecting incipient faults. Lack of explainability, feature variability for sample instances, and false alarms are challenges with data-driven FDD methods. These shortcomings are overcome by hybridization of XGBoost and IB3DM, and using eXplainable Artificial Intelligence (XAI) techniques. To combine the XGBoost and IB3DM, a fault-signature metric is proposed that helps reducing false alarms and also trigger an explanation on detecting incipient faults. To provide explainability, an eXplainable Artificial Intelligence (XAI) application is developed. It uses the local interpretable model-agnostic explanations (LIME) framework and provides explanations on classifier outputs for data instances. These explanations help field engineers/technicians for performing troubleshooting and maintenance operations. The proposed XFDDS is illustrated using experiments on different PV technologies and our results demonstrate the perceived benefits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源