论文标题
被动检测自杀尝试的行为转变
Passive detection of behavioral shifts for suicide attempt prevention
论文作者
论文摘要
每年,全世界有超过一百万的人自杀。日常护理,社会污名和治疗问题的成本仍然是克服心理健康的困难障碍。精神障碍的大多数症状都与患者的行为状态有关,例如流动性或社交活动。基于移动的技术允许被动收集患者数据,该数据补充了依赖偏见问卷和偶尔医疗任命的常规评估。在这项工作中,我们提出了一种非侵入性机器学习(ML)模型,以从智能手机应用收集的不引人注目的数据中检测精神病患者的行为转变。我们经过临床验证的结果阐明了针对预防自杀性尝试的早期检测移动工具的想法。
More than one million people commit suicide every year worldwide. The costs of daily cares, social stigma and treatment issues are still hard barriers to overcome in mental health. Most symptoms of mental disorders are related to the behavioral state of a patient, such as the mobility or social activity. Mobile-based technologies allow the passive collection of patients data, which supplements conventional assessments that rely on biased questionnaires and occasional medical appointments. In this work, we present a non-invasive machine learning (ML) model to detect behavioral shifts in psychiatric patients from unobtrusive data collected by a smartphone app. Our clinically validated results shed light on the idea of an early detection mobile tool for the task of suicide attempt prevention.