论文标题

旨在学习物理系统的可控表示

Towards Learning Controllable Representations of Physical Systems

论文作者

Haninger, Kevin, Garcia, Raul Vicente, Krueger, Joerg

论文摘要

学到的动态系统的表示降低了维度,潜在地支持下游增强学习(RL)。但是,没有建立的方法可以通过下游RL性能,从而减慢表示形式的设计来预测表示形式的适用性和评估的适用性。为了对控制的表示形式进行原则评估,我们考虑了真实状态与相应表示形式之间的关系,并提出理想情况下每个表示都对应于独特的真实状态。这激发了两个指标:时间平滑度和真实状态/表示之间的高度相互信息。这些指标与已建立的表示目标有关,并在拉格朗日系统上进行了研究,在该系统中,可以为广泛的系统形式化状态的真实状态,信息要求和统计属性。在比较基于自动编码器的表示的变体时,这些指标被证明可以预测模拟钉孔任务中的增强学习绩效。

Learned representations of dynamical systems reduce dimensionality, potentially supporting downstream reinforcement learning (RL). However, no established methods predict a representation's suitability for control and evaluation is largely done via downstream RL performance, slowing representation design. Towards a principled evaluation of representations for control, we consider the relationship between the true state and the corresponding representations, proposing that ideally each representation corresponds to a unique true state. This motivates two metrics: temporal smoothness and high mutual information between true state/representation. These metrics are related to established representation objectives, and studied on Lagrangian systems where true state, information requirements, and statistical properties of the state can be formalized for a broad class of systems. These metrics are shown to predict reinforcement learning performance in a simulated peg-in-hole task when comparing variants of autoencoder-based representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源