论文标题
统一和单调线和优化
Uniform and Monotone Line Sum Optimization
论文作者
论文摘要
{\ em行总和优化问题}要求$(0,1)$ - 矩阵最小化在其行和列总和上评估的给定函数的总和。我们表明,具有相同的行函数和相同的列函数的{\ em统一}问题,而{\ em单调}问题(在具有非插入行和列总和的矩阵上)是多项式时间可溶解的。
The {\em line sum optimization problem} asks for a $(0,1)$-matrix minimizing the sum of given functions evaluated at its row and column sums. We show that the {\em uniform} problem, with identical row functions and identical column functions, and the {\em monotone} problem, over matrices with nonincreasing row and column sums, are polynomial time solvable.