论文标题
地理意识到的自我监督学习
Geography-Aware Self-Supervised Learning
论文作者
论文摘要
对比度学习方法已大大缩小了计算机视觉任务的监督和无监督学习之间的差距。在本文中,我们探讨了它们在地理位置数据集中的应用,例如遥感,其中未标记的数据通常很丰富,但标记的数据很少。我们首先表明,由于它们的不同特征,在标准基准的对比度和监督学习之间存在非平凡的差距。为了缩小差距,我们提出了利用遥感数据的时空结构的新颖训练方法。随着时间的流逝,我们利用空间对齐的图像在对比度学习和地理位置上构建时间呈正面对来设计前文本任务。我们的实验表明,我们所提出的方法弥合了对对比度和监督的学习图像分类,对象检测和语义分割的差距,以进行遥感。此外,我们证明了所提出的方法也可以应用于地理标签的成像网图像,从而改善了各种任务的下游性能。项目网页可以在此链接地理位置 - 了解ssl.github.io上找到。
Contrastive learning methods have significantly narrowed the gap between supervised and unsupervised learning on computer vision tasks. In this paper, we explore their application to geo-located datasets, e.g. remote sensing, where unlabeled data is often abundant but labeled data is scarce. We first show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks. To close the gap, we propose novel training methods that exploit the spatio-temporal structure of remote sensing data. We leverage spatially aligned images over time to construct temporal positive pairs in contrastive learning and geo-location to design pre-text tasks. Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing. Moreover, we demonstrate that the proposed method can also be applied to geo-tagged ImageNet images, improving downstream performance on various tasks. Project Webpage can be found at this link geography-aware-ssl.github.io.