论文标题

泰勒的近似值用于偶然受限的优化问题,由具有高维随机参数的部分微分方程控制

Taylor approximation for chance constrained optimization problems governed by partial differential equations with high-dimensional random parameters

论文作者

Chen, Peng, Ghattas, Omar

论文摘要

我们提出了一种快速可扩展的优化方法,以解决由具有高维随机参数的部分微分方程(PDE)控制的机会或概率约束优化问题。为了应对昂贵的PDE解决方案和高维不确定的关键计算挑战,我们通过泰勒近似构建约束功能的替代物,这依赖于衍生物的有效计算,Hessian的低等级近似以及特征值分解的随机算法。为了解决不平等机会限制的非差异性难度的难度,我们使用了涉及机会约束的不连续指标函数的平滑近似,并应用惩罚方法将不平等约束优化问题转换为不受约束的问题。此外,我们设计了一种基于梯度的优化方案,该方案逐渐增加平滑和惩罚参数以实现收敛性,为此我们提出了对泰勒近似值对近似成本功能的梯度的有效计算。基于最佳地下水管理问题的数值实验,我们证明了泰勒近似的准确性,其大大加速约束评估的能力,持续优化方案的收敛性以及拟议方法的可伸缩性,其在一千千分之一千分之一的时间内增加了PDE soleves的数量。

We propose a fast and scalable optimization method to solve chance or probabilistic constrained optimization problems governed by partial differential equations (PDEs) with high-dimensional random parameters. To address the critical computational challenges of expensive PDE solution and high-dimensional uncertainty, we construct surrogates of the constraint function by Taylor approximation, which relies on efficient computation of the derivatives, low rank approximation of the Hessian, and a randomized algorithm for eigenvalue decomposition. To tackle the difficulty of the non-differentiability of the inequality chance constraint, we use a smooth approximation of the discontinuous indicator function involved in the chance constraint, and apply a penalty method to transform the inequality constrained optimization problem to an unconstrained one. Moreover, we design a gradient-based optimization scheme that gradually increases smoothing and penalty parameters to achieve convergence, for which we present an efficient computation of the gradient of the approximate cost functional by the Taylor approximation. Based on numerical experiments for a problem in optimal groundwater management, we demonstrate the accuracy of the Taylor approximation, its ability to greatly accelerate constraint evaluations, the convergence of the continuation optimization scheme, and the scalability of the proposed method in terms of the number of PDE solves with increasing random parameter dimension from one thousand to hundreds of thousands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源