论文标题

$ t $ cores和广场总和的组合结果

Combinatorial results on $t$-cores and sums of squares

论文作者

Males, Joshua, Tripp, Zack

论文摘要

我们将连接与$ t $ cores和自轭$ t $ cores之间的连接与广场总和。为此,我们在$ t $ core分区和自换$ t $ t $ core分区之间提供了一个正整数$ n $的明确地图,以作为某些数字表示作为正方形的总和。例如,自轭$ 4 $ -CORE分区$λ=(4,1,1,1)$唯一对应于解决方案$ 61 = 6^2+5^2 $。作为推论,我们完全将$ t $ cores和hurwitz班级数量之间的关系分类。 使用这些工具,我们看到某些表示形式如何自然地将其分解成$ t $ cors的家庭。最后,我们在分区上构造了一个明确的地图,以解释平等$ 2 \ operatatorName {sc} _7(8n+1)= \ operatatorName {c} _4(7n+2)$先前由Bringmann,Kane和kane和第一作者研究。

We classify the connection between $t$-cores and self-conjugate $t$-cores to sums of squares. To do so, we provide explicit maps between $t$-core partitions and self-conjugate $t$-core partitions of a positive integer $n$ to representations of certain numbers as sums of squares. For example, the self-conjugate $4$-core partition $λ=(4,1,1,1)$ corresponds uniquely to the solution $61=6^2+5^2$. As a corollary, we completely classify the relationship between $t$-cores and Hurwitz class numbers. Using these tools, we see how certain sets of representations as sums of squares naturally decompose into families of $t$-cores. Finally, we construct an explicit map on partitions to explain the equality $2\operatorname{sc}_7(8n+1) = \operatorname{c}_4(7n+2)$ previously studied by Bringmann, Kane, and the first author.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源