论文标题
在$ \ mathbb {p}(a,b,c)$ for $ \ min(a,b,c)\ leq4 $上的曲线上
On curves with high multiplicity on $\mathbb{P}(a,b,c)$ for $\min(a,b,c)\leq4$
论文作者
论文摘要
在加权的投影表面$ \ mathbb {p}(a,b,c)$带有$ \ min(a,b,c)\ leq 4 $,我们计算了富裕分裂的{\ em em有效阈值}的下限,换句话说,换句话说,分隔的一部分可以在指定的点上具有最高的多重性。我们希望这些界限接近敏锐。这转化为在$ \ mathbb {p}(a,b,c)$的爆炸中找到除数类,该$ \ m m mathbb {a,b,c)$生成了锥体中包含的锥体,并且可能接近有效的锥体。
On a weighted projective surface $\mathbb{P}(a,b,c)$ with $\min(a,b,c)\leq 4$, we compute lower bounds for the {\em effective threshold} of an ample divisor, in other words, the highest multiplicity a section of the divisor can have at a specified point. We expect that these bounds are close to being sharp. This translates into finding divisor classes on the blowup of $\mathbb{P}(a,b,c)$ that generate a cone contained in, and probably close to, the effective cone.