论文标题

在$ \ mathbb {p}(a,b,c)$ for $ \ min(a,b,c)\ leq4 $上的曲线上

On curves with high multiplicity on $\mathbb{P}(a,b,c)$ for $\min(a,b,c)\leq4$

论文作者

McKinnon, David, Razafy, Rindra, Satriano, Matthew, Sun, Yuxuan

论文摘要

在加权的投影表面$ \ mathbb {p}(a,b,c)$带有$ \ min(a,b,c)\ leq 4 $,我们计算了富裕分裂的{\ em em有效阈值}的下限,换句话说,换句话说,分隔的一部分可以在指定的点上具有最高的多重性。我们希望这些界限接近敏锐。这转化为在$ \ mathbb {p}(a,b,c)$的爆炸中找到除数类,该$ \ m m mathbb {a,b,c)$生成了锥体中包含的锥体,并且可能接近有效的锥体。

On a weighted projective surface $\mathbb{P}(a,b,c)$ with $\min(a,b,c)\leq 4$, we compute lower bounds for the {\em effective threshold} of an ample divisor, in other words, the highest multiplicity a section of the divisor can have at a specified point. We expect that these bounds are close to being sharp. This translates into finding divisor classes on the blowup of $\mathbb{P}(a,b,c)$ that generate a cone contained in, and probably close to, the effective cone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源