论文标题

$ \ mathbb {r}^3 $的polyhedra的Steinitz定理的类似物

An analogue of a theorem of Steinitz for ball polyhedra in $\mathbb{R}^3$

论文作者

Almohammad, Sami Mezal, Naszódi, Márton, Lángi, Zsolt

论文摘要

Steinitz的定理指出,图$ g $是$ 3 $维的凸polyhedron的边缘图,并且仅当且仅当$ g $很简单,飞机和$ 3 $连接。我们证明了该定理的Ball Polyhedra定理,也就是说,对于有限的许多单位球的交集,$ \ Mathbb {r}^3 $。

Steinitz's theorem states that a graph $G$ is the edge-graph of a $3$-dimensional convex polyhedron if and only if, $G$ is simple, plane and $3$-connected. We prove an analogue of this theorem for ball polyhedra, that is, for intersections of finitely many unit balls in $\mathbb{R}^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源