论文标题
Cosheaf理论和刚性分析空间的过度会议的Verdier双重性
Cosheaf Theory and Overconvergent Verdier Duality for Rigid Analytic Spaces
论文作者
论文摘要
本文开发了Cosheaf理论在刚性分析空间上的各个方面,并证明了在分离的,偏式型的空间上过度融合的束带的脱毛毛细血管二元性等效定理,类似于雅各布·卢里(Jacob Lurie)对局部紧凑型的Verdier二元性的处理,Hausdorff拓扑局势拓扑空间。
This paper develops aspects of cosheaf theory on rigid analytic spaces, and demonstrates a sheaf-cosheaf Verdier duality equivalence theorem for overconvergent sheaves on separated, paracompact spaces, analogous to Jacob Lurie's treatment of Verdier duality for locally compact, Hausdorff topological spaces.