论文标题

二维ISING模型的分区函数的疾病解决方案

Disorder solutions for the partition functions of the two-dimensional Ising-like models

论文作者

Khrapov, Pavel

论文摘要

对于在平方晶格中具有所有可能相互作用的广义ISING模型,在热力学极限中找到分区函数的公式和每个晶格的自由能在某个一般情况下,在一般情况下,在一般情况下,在汉密尔顿的10维溶液中的8维溶液中的某个二维子集。结果,当部分参数设置为零时,对于最接近的,下一个最邻居的模型,将获得疾病溶液,并且在外部磁场中且没有外部场中的四个旋转,三角形和“ Checkerboard-triangular” ISING模型在外部磁场中具有三重相互作用。

For the generalized Ising models with all possible interactions within a face of the square lattice the formulas for finding partition function and free energy per lattice site in the thermodynamic limit were derived on a certain, in the general case, 8-dimensional subset of exact disordered solutions of 10-dimensional set of the Hamiltonian's parameters. When a part of parameters are set to zero, as a consequence, the disorder solutions were got for the models with nearest, next-nearest-neighbor and the interaction of four spins in an external field and without an external field, triangular and "checkerboard-triangular" Ising models with triple interactions in an external magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源