论文标题
压力控制的三聚化,用于切换三角形反铁磁铁Mn $ _3 $ sn的异常大厅效应
Pressure controlled trimerization for switching of anomalous Hall effect in triangular antiferromagnet Mn$_3$Sn
论文作者
论文摘要
在这里,我们介绍了一项详细的理论和实验研究,内容涉及三角形抗铁磁性(AFM)化合物Mn $ _3 $ sn的压力引起的异常霍尔效应(AHE)的转换。我们的理论模型表明,压力驱动的平面内Mn键长$ $的显着分裂,即有效的三序化,从而通过修改系统中的平面间交换参数来稳定螺旋AFM基态。我们通过实验表明,Mn $ _3 $ sn中的AHE在周围压力下的5 $μΩ$ cm减少到零,在施加的压力约为1.5 GPA时。此外,我们的压力依赖性磁化研究表明,Mn $ _3 $ sn的常规三角AFM基态系统地将对称性不支持实现有限AHE所需的非呈现的浆果弯曲所需的非呈现的浆果曲率。压力依赖性X射线衍射(XRD)研究排除了结构相变的任何作用在观察到的现象中。此外,当系统进入螺旋AFM相时,发现环境压力下的温度依赖性内晶格参数偏离单调行为,从而支持了修剪在控制AHE中的提议的影响。我们认为,本研究为理解MN $ _3 $ SN中不同磁接地状态的稳定机制和相关材料的稳定机制做出了重要贡献,以实现与AHE切换有关的潜在应用。
Here, we present a detailed theoretical and experimental study on the pressure induced switching of anomalous Hall effect (AHE) in the triangular antiferromagnetic (AFM) compound Mn$_3$Sn. Our theoretical model suggests pressure driven significant splitting of the in-plane Mn bond lengths $i.e.$ an effective trimerization, which in turn stabilizes a helical AFM ground state by modifying the inter-plane exchange parameters in the system. We experimentally demonstrate that the AHE in Mn$_3$Sn reduces from 5$μΩ$ cm at ambient pressure to zero at an applied pressure of about 1.5 GPa. Furthermore, our pressure dependent magnetization study reveals that the conventional triangular AFM ground state of Mn$_3$Sn systematically transforms into the helical AFM phase where the symmetry does not support a non-vanishing Berry curvature required for the realization of a finite AHE. The pressure dependent x-ray diffraction (XRD) study rules out any role of structural phase transition in the observed phenomenon. In addition, the temperature dependent in-plane lattice parameter at ambient pressure is found to deviate from the monotonic behavior when the system enters into the helical AFM phase, thereby, supporting the proposed impact of trimerization in controlling the AHE. We believe that the present study makes an important contribution towards understanding the stabilization mechanism of different magnetic ground states in Mn$_3$Sn and related materials for their potential applications pertaining to AHE switching.