论文标题

恢复不完美的:在存在动态局部蛋白质的情况下进行细胞分割

Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins

论文作者

Çiçek, Özgün, Marrakchi, Yassine, Antwi, Enoch Boasiako, Di Ventura, Barbara, Brox, Thomas

论文摘要

在生物医学数据上部署现成的分割网络已成为普遍实践,但是,如果仅临时可见图像序列中感兴趣的结构,则现有的逐帧方法失败。在本文中,我们为基于时间传播和不确定性估计的时间进行分割提供了一种解决方案。我们将不确定性估计整合到掩模R-CNN网络中,并从不确定性低的框架中传播运动校正的分割掩模,到那些具有高不确定性的框架以处理分割信号的临时损失。我们证明了这种方法比逐帧分割的价值和对人类胚胎肾(HEK293T)细胞的数据的定期时间传播,并用荧光蛋白瞬时转染,该荧光蛋白随着时间的推移随时间流入和流入细胞核。此处介绍的方法将增强旨在了解分子和细胞功能的微观实验。

Deploying off-the-shelf segmentation networks on biomedical data has become common practice, yet if structures of interest in an image sequence are visible only temporarily, existing frame-by-frame methods fail. In this paper, we provide a solution to segmentation of imperfect data through time based on temporal propagation and uncertainty estimation. We integrate uncertainty estimation into Mask R-CNN network and propagate motion-corrected segmentation masks from frames with low uncertainty to those frames with high uncertainty to handle temporary loss of signal for segmentation. We demonstrate the value of this approach over frame-by-frame segmentation and regular temporal propagation on data from human embryonic kidney (HEK293T) cells transiently transfected with a fluorescent protein that moves in and out of the nucleus over time. The method presented here will empower microscopic experiments aimed at understanding molecular and cellular function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源