论文标题
设计用于验证生物分子网络的实验
Design of Experiments for Verifying Biomolecular Networks
论文作者
论文摘要
使用机械(非机器学习)模型设计生物分子网络的分子和合成生物学的趋势正在增长。一旦设计,这些网络就需要通过实验结果来验证,以确保理论网络正确对真实系统进行建模。但是,这些实验可能是昂贵且耗时的。我们提出了一种实验方法的设计,以有效地验证这些网络。高斯过程用于构建实验结果与设计响应之间差异的概率模型,然后是用于选择下一个样本点的贝叶斯优化策略。我们比较不同的设计标准,并基于度量标准制定停止标准,该指标量化了整个表面上的差异及其不确定性。我们从生化过程的计算机模型中测试了模拟数据的策略。
There is a growing trend in molecular and synthetic biology of using mechanistic (non machine learning) models to design biomolecular networks. Once designed, these networks need to be validated by experimental results to ensure the theoretical network correctly models the true system. However, these experiments can be expensive and time consuming. We propose a design of experiments approach for validating these networks efficiently. Gaussian processes are used to construct a probabilistic model of the discrepancy between experimental results and the designed response, then a Bayesian optimization strategy used to select the next sample points. We compare different design criteria and develop a stopping criterion based on a metric that quantifies this discrepancy over the whole surface, and its uncertainty. We test our strategy on simulated data from computer models of biochemical processes.