论文标题

在确定形状的布置中,关于线和斜率的一些开放问题

Some Open Problems Regarding the Number of Lines and Slopes in Arrangements that Determine Shapes

论文作者

Haridis, Alexandros

论文摘要

欧几里得飞机上的一套直线和一套$ p $点点定义安排$ \ nathcal {a} $ =($ l $,$ p $)的建筑线和注册标记,并且仅当$ p $中的任何点是$ p $中的任何点时,至少是$ l $ lonnon n nontare and n nontare and Bare and Bare and Bare and Bare and Bare and Bare and Bare and Parter的一点点(2) $ P $。这篇说明性文章讨论了有关这种点线安排的以下开放问题。假设$ k \ geq 0 $在飞机中给出了点数。必须确定多少个建筑线$ K $点? $ k $点确定的构造线定义了多少个不同的斜率或方向?飞机的分区有多少个不同的施工线,以便以$ k $点相交?据报道,少量$ K $的经验证据为这三个问题提供了部分答案。在检查了有关发射率几何形状的有限线性空间的相关问题之后,在构造线的数量上也陈述了第一个问题的猜想。本文有助于与形状语法理论领域形状数学有关的工作体系。

A set $L$ of straight lines and a set $P$ of points in the Euclidean plane define an arrangement $\mathcal{A}$ = ($L$, $P$) of construction lines and registration marks, if and only if: (1) any point in $P$ is a point of intersection of at least two lines in $L$, and (2) any two nonparallel lines in $L$ have a unique point of intersection in $P$. This expository article discusses the following open problems regarding such point-line arrangements. Suppose $k \geq 0$ number of points are given in the plane. How many construction lines $k$ points must determine? How many distinct slopes, or directions, are defined by construction lines that $k$ points determine? How many distinct sets of construction lines partition the plane, such that the lines meet at exactly $k$ points? Empirical evidence is reported for small numbers of $k$, offering partial answers to the three problems. A conjecture is also stated for the first problem, on the number of construction lines, after examining a related problem about finite linear spaces from incidence geometry. This paper contributes to the body of work related to the mathematics of shapes in the area of shape grammar theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源