论文标题

Tianlai实验的数据处理管道

Data Processing Pipeline For Tianlai Experiment

论文作者

Zuo, Shifan, Li, Jixia, Li, Yichao, Santanu, Das, Stebbins, Albert, Masui, Kiyoshi W., Shaw, Richard, Zhang, Jiao, Wu, Fengquan, Chen, Xuelei

论文摘要

田莱项目是一个21厘米强度映射实验,旨在通过测量大型结构功率谱中的重子声学振荡(BAO)特征来检测暗能量。该实验提供了测试宇宙学21cm信号提取的数据处理方法的机会,这在当前的射电天文学研究中仍然是一个巨大的挑战。 21cm信号比前景弱得多,并且很容易受到仪器响应中缺陷的影响。此外,处理大量的干涉仪数据构成了实际挑战。我们已经开发了一个名为{\ tt tlPipe}的数据处理管道软件,以处理Tianlai实验的漂移扫描调查数据。它执行脱机数据处理任务,例如射频干扰(RFI)标记,阵列校准,套筒制作等。它还包括数据分析所需的效用功能,例如数据选择,转换,可视化等。实现了许多新算法,例如用于数组校准的特征向量分解方法和用于$ M $ mode分析的Tikhonov正则化。在本文中,我们描述了{\ tt tlpipe}的设计和实现,并通过对真实数据的一些分析来说明其功能。最后,我们概述了该公开代码未来开发的指示。

The Tianlai project is a 21cm intensity mapping experiment aimed at detecting dark energy by measuring the baryon acoustic oscillation (BAO) features in the large scale structure power spectrum. This experiment provides an opportunity to test the data processing methods for cosmological 21cm signal extraction, which is still a great challenge in current radio astronomy research. The 21cm signal is much weaker than the foregrounds and easily affected by the imperfections in the instrumental responses. Furthermore, processing the large volumes of interferometer data poses a practical challenge. We have developed a data processing pipeline software called {\tt tlpipe} to process the drift scan survey data from the Tianlai experiment. It performs offline data processing tasks such as radio frequency interference (RFI) flagging, array calibration, binning, and map-making, etc. It also includes utility functions needed for the data analysis, such as data selection, transformation, visualization and others. A number of new algorithms are implemented, for example the eigenvector decomposition method for array calibration and the Tikhonov regularization for $m$-mode analysis. In this paper we describe the design and implementation of the {\tt tlpipe} and illustrate its functions with some analysis of real data. Finally, we outline directions for future development of this publicly code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源