论文标题
对抗分类:必要的条件和几何流动
Adversarial Classification: Necessary conditions and geometric flows
论文作者
论文摘要
我们研究了一种对抗性分类的版本,其中使用分析中的工具,可以授权对抗性损坏数据输入到一定距离$ \ varepsilon $。特别是,我们描述了与最佳分类器相关的必要条件。使用必要的条件,我们得出了一个几何进化方程,该方程可用于跟踪分类边界的变化,因为$ \ varepsilon $都会有所不同。该进化方程可以描述为一个维度在一个维的微分方程的未耦合系统,或在较高维度中的平均曲率类型方程。在一个维度和对数据分布的温和假设下,我们严格地证明,人们可以使用$ \ varepsilon = 0 $开始使用初始值问题,这仅是贝叶斯分类器,以便为$ \ \ varepsilon $的小值求解对抗性问题的全局最小化。在较高的维度中,我们提供了类似的结果,尽管有条件地存在初始值问题的常规解决方案。在证明我们的主要结果的过程中,我们获得了将原始对抗问题与最佳运输问题联系起来的独立利息的结果,这是在没有关于班级是否平衡的假设下。还提出了说明这些想法的数值示例。
We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance $\varepsilon$, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as $\varepsilon$ varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension, and under mild assumptions on the data distribution, we rigorously prove that one can use the initial value problem starting from $\varepsilon=0$, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem for small values of $\varepsilon$. In higher dimensions we provide a similar result, albeit conditional to the existence of regular solutions of the initial value problem. In the process of proving our main results we obtain a result of independent interest connecting the original adversarial problem with an optimal transport problem under no assumptions on whether classes are balanced or not. Numerical examples illustrating these ideas are also presented.