论文标题

在复杂阶段的完整配置的地层焓的监督深度学习预测:$σ-$ epeas作为示例

Supervised deep learning prediction of the formation enthalpy of the full set of configurations in complex phases: the $σ-$phase as an example

论文作者

Crivello, Jean-Claude, Sokolovska, Nataliya, Joubert, Jean-Marc

论文摘要

机器学习(ML)方法已成为许多学科(例如物质科学)中科学探究不可或缺的一部分。在此手稿中,我们演示了如何使用ML预测固态化学中的几种特性,尤其是给定的复杂晶体学阶段形成的热量(此处为$σ-$相位,$ tp30 $,$ d8_ {b} $)。基于一个独立且前所未有的大型第一原理数据集,该数据集包含约10,000美元的$ n = 14 $不同的元素,我们使用了一种监督的学习方法,以预测所有$ \ sim $ 500,000 $ 500,000可能的配置,在平均绝对错误中,在23 mev/at($ \ sim $ \ sim $ \ sim $ 2 kj.mol $^sim $^sim $^$^$^$ feead)中均为$ ns face and face and face and face and。在四方细胞参数上。我们表明,与传统的回归技术相比,神经网络回归算法在预测产出的准确性方面可显着提高。添加具有物理性质(原子半径,价电子数)的描述符可提高学习精度。根据我们的分析,唯一的二进制组合组成的训练数据库在预测更高的系统配置方面起着重要作用。我们的结果为组合二进制计算的有效高通量研究开辟了广泛的途径,以进行复杂阶段的多组分预测。

Machine learning (ML) methods are becoming integral to scientific inquiry in numerous disciplines, such as material sciences. In this manuscript, we demonstrate how ML can be used to predict several properties in solid-state chemistry, in particular the heat of formation of a given complex crystallographic phase (here the $σ-$phase, $tP30$, $D8_{b}$). Based on an independent and unprecedented large first principles dataset containing about 10,000 $σ-$compounds with $n=14$ different elements, we used a supervised learning approach, to predict all the $\sim$500,000 possible configurations within a mean absolute error of 23 meV/at ($\sim$2 kJ.mol$^{-1}$) on the heat of formation and $\sim$0.06 Ang. on the tetragonal cell parameters. We showed that neural network regression algorithms provide a significant improvement in accuracy of the predicted output compared to traditional regression techniques. Adding descriptors having physical nature (atomic radius, number of valence electrons) improves the learning precision. Based on our analysis, the training database composed of the only binary-compositions plays a major role in predicting the higher degree system configurations. Our result opens a broad avenue to efficient high-throughput investigations of the combinatorial binary calculation for multicomponent prediction of a complex phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源