论文标题

在线最大$ k $ - 间隔覆盖率问题

Online Maximum $k$-Interval Coverage Problem

论文作者

Li, Songhua, Li, Minming, Duan, Lingjie, Lee, Victor C. S.

论文摘要

我们研究了一条线上的在线最大覆盖范围问题,在线,在线序列(可能彼此相交)的在线序列较大的间隔和整数$ k $,我们的目标是最多可最大程度地选择目标间隔的总覆盖长度的$ k $。在子间隔的发布时间戳上立即做出或拒绝接受或拒绝每个子交织的决定。我们全面研究了此问题的不同设置,即有关释放的子间隔的长度和已释放的子介质总数。我们首先在本文中有关的环境分别介绍了竞争比率的下限。对于脱机问题,所有已发布的子互助的序列都在决策者中已知,我们提出了一种基于动态编程的最佳方法作为基准。对于在线问题,我们首先提出了一个基于单阈值的确定性算法SOA,如果增加的长度超过一定阈值,则添加子互动,分别达到接近下限的竞争比。然后,我们通过使用探索的第一个阈值和第二个阈值(比第一个阈值更大)扩展到基于双阈值的算法DOA。通过我们提议的计划解决了两个阈值,我们表明DOA在最差的表现中改善了SOA。此外,我们证明一种确定性算法,该算法通过多种非进攻阈值接受子介学,甚至不能超越SOA。

We study the online maximum coverage problem on a line, in which, given an online sequence of sub-intervals (which may intersect among each other) of a target large interval and an integer $k$, we aim to select at most $k$ of the sub-intervals such that the total covered length of the target interval is maximized. The decision to accept or reject each sub-interval is made immediately and irrevocably (no preemption) right at the release timestamp of the sub-interval. We comprehensively study different settings of this problem regarding both the length of a released sub-interval and the total number of released sub-intervals. We first present lower bounds on the competitive ratio for the settings concerned in this paper, respectively. For the offline problem where the sequence of all the released sub-intervals is known in advance to the decision-maker, we propose a dynamic-programming-based optimal approach as the benchmark. For the online problem, we first propose a single-threshold-based deterministic algorithm SOA by adding a sub-interval if the added length exceeds a certain threshold, achieving competitive ratios close to the lower bounds, respectively. Then, we extend to a double-thresholds-based algorithm DOA, by using the first threshold for exploration and the second threshold (larger than the first one) for exploitation. With the two thresholds solved by our proposed program, we show that DOA improves SOA in the worst-case performance. Moreover, we prove that a deterministic algorithm that accepts sub-intervals by multi non-increasing thresholds cannot outperform even SOA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源