论文标题
具有基于学习的深度感知的自动腹腔镜最佳视图控制的数据驱动的整体框架
Data-driven Holistic Framework for Automated Laparoscope Optimal View Control with Learning-based Depth Perception
论文作者
论文摘要
腹腔镜视野(FOV)控制是微创手术(MIS)中最基本和最重要的组成部分之一,但是,传统的手动握持范式可能很容易使外科手术助手疲劳,并在外科医生之间误解,也使外科医生之间的助手也阻碍了助手提供高品质的FOV。针对此问题,我们在这里提出了一个数据驱动的框架,以实现自动腹腔镜最佳FOV控制。为了实现这一目标,我们脱机从内部手术视频中学习了腹腔镜的运动策略,相对于外科医生的手持外科手术工具,开发了我们的控制域知识和最佳视图发电机。为了在线调整腹腔镜,我们首先采用一种基于学习的方法来细分手术工具的二维(2D)位置,并进一步利用该结果从我们的新颖无验证的Robodeppth模型中获得的量表感知深度估计结果,仅通过单眼摄像机反馈,从而将上述融合返回3D。为了消除移动腹腔镜时远程运动中心(RCM)约束引起的FOV的不良方向,我们建议使用仿射图提出一种新型的失真约束,以最大程度地减少视觉翘曲问题,而空间隙控制器也嵌入到统一和删除方式中的所有类型的框架中,以使框架中的所有类型的错误。实验是使用通用机器人(UR)和Karl Storz腹腔镜/仪器进行的,这证明了我们的域知识和学习实现自动化摄像机控制的框架的可行性。
Laparoscopic Field of View (FOV) control is one of the most fundamental and important components in Minimally Invasive Surgery (MIS), nevertheless, the traditional manual holding paradigm may easily bring fatigue to surgical assistants, and misunderstanding between surgeons also hinders assistants to provide a high-quality FOV. Targeting this problem, we here present a data-driven framework to realize an automated laparoscopic optimal FOV control. To achieve this goal, we offline learn a motion strategy of laparoscope relative to the surgeon's hand-held surgical tool from our in-house surgical videos, developing our control domain knowledge and an optimal view generator. To adjust the laparoscope online, we first adopt a learning-based method to segment the two-dimensional (2D) position of the surgical tool, and further leverage this outcome to obtain its scale-aware depth from dense depth estimation results calculated by our novel unsupervised RoboDepth model only with the monocular camera feedback, hence in return fusing the above real-time 3D position into our control loop. To eliminate the misorientation of FOV caused by Remote Center of Motion (RCM) constraints when moving the laparoscope, we propose a novel distortion constraint using an affine map to minimize the visual warping problem, and a null-space controller is also embedded into the framework to optimize all types of errors in a unified and decoupled manner. Experiments are conducted using Universal Robot (UR) and Karl Storz Laparoscope/Instruments, which prove the feasibility of our domain knowledge and learning enabled framework for automated camera control.