论文标题

遥感数据的工业烟羽来表征

Characterization of Industrial Smoke Plumes from Remote Sensing Data

论文作者

Mommert, Michael, Sigel, Mario, Neuhausler, Marcel, Scheibenreif, Linus, Borth, Damian

论文摘要

全球变暖的主要驱动力已被确定为工业活动中温室气体(GHG)排放的人为释放。必须对这些排放的定量监测完全了解它们对地球气候的影响并大规模执行排放法规。在这项工作中,我们研究了从ESA的Sentinel-2卫星中检测和量化从全球且免费提供的多波段图像数据的工业烟羽的可能性。使用改良的Resnet-50,我们可以检测到不同尺寸的烟雾,精度为94.3%。该模型正确地忽略了自然云,并专注于与气溶胶和水蒸气吸收光谱吸收的那些成像通道,从而实现了烟雾的定位。我们利用这种定位能力并在数据的标记子样本上训练U-NET分割模型,从而导致跨工会相交(IOU)度量为0.608,并检测任何94.0%的烟雾羽流的总体准确性;平均而言,我们的模型可以将图像中烟雾覆盖的面积重现为5.6%以内。我们模型的性能主要受到偶尔与表面对象的混乱,无法识别半透明的烟雾以及人类限制以根据仅RGB的图像正确识别烟雾的限制。然而,我们的结果使我们能够可靠地检测并定性地估计烟雾活动水平,以监测全球工业工厂的活动。我们的数据集和代码库可公开使用。

The major driver of global warming has been identified as the anthropogenic release of greenhouse gas (GHG) emissions from industrial activities. The quantitative monitoring of these emissions is mandatory to fully understand their effect on the Earth's climate and to enforce emission regulations on a large scale. In this work, we investigate the possibility to detect and quantify industrial smoke plumes from globally and freely available multi-band image data from ESA's Sentinel-2 satellites. Using a modified ResNet-50, we can detect smoke plumes of different sizes with an accuracy of 94.3%. The model correctly ignores natural clouds and focuses on those imaging channels that are related to the spectral absorption from aerosols and water vapor, enabling the localization of smoke. We exploit this localization ability and train a U-Net segmentation model on a labeled sub-sample of our data, resulting in an Intersection-over-Union (IoU) metric of 0.608 and an overall accuracy for the detection of any smoke plume of 94.0%; on average, our model can reproduce the area covered by smoke in an image to within 5.6%. The performance of our model is mostly limited by occasional confusion with surface objects, the inability to identify semi-transparent smoke, and human limitations to properly identify smoke based on RGB-only images. Nevertheless, our results enable us to reliably detect and qualitatively estimate the level of smoke activity in order to monitor activity in industrial plants across the globe. Our data set and code base are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源