论文标题

使用深度学习对洗手的自动质量评估

Automated Quality Assessment of Hand Washing Using Deep Learning

论文作者

Ivanovs, Maksims, Kadikis, Roberts, Lulla, Martins, Rutkovskis, Aleksejs, Elsts, Atis

论文摘要

洗手是预防传染病的最重要方法之一,包括Covid-19。不幸的是,医务人员并不总是遵循世界卫生组织(WHO)在日常工作中洗手指南。为此,我们介绍了神经网络,以自动识别WHO定义的不同洗涤运动。我们在大型(2000多个视频)的一部分中训练神经网络,并带有不同的洗涤动作的数据集。初步结果表明,使用预先训练的神经网络模型(例如MobileNetV2和Teastion),可以实现> 64%的准确性,以识别不同的洗涤运动。我们还描述了作为本工作的一部分创建的上述开放访问数据集的集合和结构。最后,我们描述了如何使用神经网络来构建手机应用程序,以自动质量控制和医疗专业人员的实时反馈。

Washing hands is one of the most important ways to prevent infectious diseases, including COVID-19. Unfortunately, medical staff does not always follow the World Health Organization (WHO) hand washing guidelines in their everyday work. To this end, we present neural networks for automatically recognizing the different washing movements defined by the WHO. We train the neural network on a part of a large (2000+ videos) real-world labeled dataset with the different washing movements. The preliminary results show that using pre-trained neural network models such as MobileNetV2 and Xception for the task, it is possible to achieve >64 % accuracy in recognizing the different washing movements. We also describe the collection and the structure of the above open-access dataset created as part of this work. Finally, we describe how the neural network can be used to construct a mobile phone application for automatic quality control and real-time feedback for medical professionals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源