论文标题
随机有色顶点模型和局部关系的观察物
Observables of stochastic colored vertex models and local relation
论文作者
论文摘要
我们研究了随机有色六个顶点(SC6V)模型及其融合。我们的主要结果是该模型的自然可观察物的积分表达式 - 高度功能的关节Q-amments。这概括了Borodin-wheeler的最新结果。关键的技术成分是SC6V模型在相邻点中的高度功能的新关系。这种关系具有独立的利益;我们将其称为本地关系。作为应用,我们给出了Borodin-Gorin-Wheeler和Galashin最近建立的SC6V模型高度函数的某些对称对称性的新证明,以及用于Beta聚合物延迟分区函数的联合矩的新公式。
We study the stochastic colored six vertex (SC6V) model and its fusion. Our main result is an integral expression for natural observables of this model -- joint q-moments of height functions. This generalises a recent result of Borodin-Wheeler. The key technical ingredient is a new relation of height functions of SC6V model in neighboring points. This relation is of independent interest; we refer to it as a local relation. As applications, we give a new proof of certain symmetries of height functions of SC6V model recently established by Borodin-Gorin-Wheeler and Galashin, and new formulas for joint moments of delayed partition functions of Beta polymer.