论文标题
具有奇特弹性的固体中的拓扑缺陷
Topological defects in solids with odd elasticity
论文作者
论文摘要
晶体学通常会研究相互作用力的点颗粒的集合,其相互作用力是电势的梯度。提升该假设的尤为会导致连续限制,并以称为奇弹性的其他模量形式形式。我们表明,这种奇怪的弹性模量修改了拓扑缺陷及其相互作用引起的应变,甚至逆转了结合脱位对的稳定性。除了连续理论之外,孤立的位错还可以通过微观工作周期自动推动其在其核心上与常规的桃子koehler力竞争的核心,例如,由环境扭矩密度引起的。我们执行分子动力学模拟分离活性塑料过程,并讨论它们与由旋转颗粒,类似涡流的物体和机器人超材料组成的固体的实验相关性。
Crystallography typically studies collections of point particles whose interaction forces are the gradient of a potential. Lifting this assumption generically gives rise in the continuum limit to a form of elasticity with additional moduli known as odd elasticity. We show that such odd elastic moduli modify the strain induced by topological defects and their interactions, even reversing the stability of, otherwise, bound dislocation pairs. Beyond continuum theory, isolated dislocations can self propel via microscopic work cycles active at their cores that compete with conventional Peach-Koehler forces caused, for example, by an ambient torque density. We perform molecular dynamics simulations isolating active plastic processes and discuss their experimental relevance to solids composed of spinning particles, vortex-like objects, and robotic metamaterials.