论文标题
CMB B模式搜索的最小功率基谱矩扩展
A minimal power-spectrum-based moment expansion for CMB B-mode searches
论文作者
论文摘要
两极分化前景的表征和建模已成为追求原始$ b $ modes的关键问题。继续进行的一种典型方法是分解和参数前景的光谱特性及其量表依赖性(即假设前景光谱在天空平均值中到处都有很好的描述)。由于实际上在星系中的前景属性各不相同,因此该假设导致模型中的不准确性,这些模型表现为最终宇宙学参数中的偏见(在这种情况下,张张量比比率$ r $)。这尤其与在天空的大量部分(例如Simons天文台(SO))上进行的调查特别重要,其中应根据参数值的分布进行模拟光谱。在这里,我们提出了一种基于现有的``矩扩展''方法来解决此问题的方法,该方法在基于电源的分析中直接适用于基于地面的多频数据。此外,该方法仅使用一组简单的物理解释的参数集,从而最大程度地降低了前景不确定性对最终$ b $ mmode约束的影响。我们使用类似Soike的模拟观测值来验证该方法,恢复了张量与尺度比率$ r $的无偏估计,标准偏差$σ(R)\ simeq0.003 $,与官方预测兼容。将方法应用于公共Bicep2/Keck数据时,我们发现上限$ r <0.06 $($ 95 \%\,{\ rmc.l。} $),与Bicep2/Keck兼容时,当通过与规模无关的频率频率解次差异参数时,由BICEP2/KECK兼容。我们还讨论了基于功率谱的力矩扩展与CMB镜头分析的方法之间的形式相似之处。
The characterization and modeling of polarized foregrounds has become a critical issue in the quest for primordial $B$-modes. A typical method to proceed is to factorize and parametrize the spectral properties of foregrounds and their scale dependence (i.e. assuming that foreground spectra are well described everywhere by their sky average). Since in reality foreground properties vary across the Galaxy, this assumption leads to inaccuracies in the model that manifest themselves as biases in the final cosmological parameters (in this case the tensor-to-scalar ratio $r$). This is particularly relevant for surveys over large fractions of the sky, such as the Simons Observatory (SO), where the spectra should be modeled over a distribution of parameter values. Here we propose a method based on the existing ``moment expansion'' approach to address this issue in a power-spectrum-based analysis that is directly applicable in ground-based multi-frequency data. Additionally, the method uses only a small set of parameters with simple physical interpretation, minimizing the impact of foreground uncertainties on the final $B$-mode constraints. We validate the method using SO-like simulated observations, recovering an unbiased estimate of the tensor-to-scalar ratio $r$ with standard deviation $σ(r)\simeq0.003$, compatible with official forecasts. When applying the method to the public BICEP2/Keck data, we find an upper bound $r<0.06$ ($95\%\,{\rm C.L.}$), compatible with the result found by BICEP2/Keck when parametrizing spectral index variations through a scale-independent frequency decorrelation parameter. We also discuss the formal similarities between the power spectrum-based moment expansion and methods used in the analysis of CMB lensing.