论文标题
3D Kitaev量子自旋液体的热力学通过张量网络
Thermodynamics of 3D Kitaev quantum spin liquids via tensor networks
论文作者
论文摘要
我们分别在热力学极限下,分别研究了3D Kitaev和Kitaev-Heisenberg模型,分别是Hyperhoneycomb和Hyperoctagon Lattices,均以零和有限的温度为单位。我们的分析依赖于基于图的纠缠态(GPEPS)的高级张量网络(TN)模拟。我们绘制模型的TN相图,并在零温度和有限温度下表征其基础间隙和无间隙相。特别是,我们证明了如何从高温度的高温系统中冷却,导致旋转将旋转的分数化为流动的主要纳拉植物费用和量规场,这些旋转在两个单独的温度方案中发生,将其指定为特定的热量作为双峰言论,以及其他数量,以及其他数量,例如热熵,旋转式透射率和键合透镜,并将其带到其他数量上。使用Kitaev模型的Majorana表示,我们进一步表明,低温热过渡到Kitaev量子旋转液体(QSL)相与非平凡的Majorana Band拓扑结构和Weyl节点的存在有关,Weyl节点的存在通过非危险的Chern Chern数字和有限的热霍尔电导率来表现出来。除了纯粹的基塔夫极限之外,我们还研究了高八角形晶格上的3D Kitaev-Heisenberg(KH)模型,并为不同的Heisenberg耦合提取完整的相图。我们进一步探索了KH模型中磁有序区域的热力学特性,并表明,与QSL相相比,这里的热相转换遵循标准的Landau对称性理论。
We study the 3D Kitaev and Kitaev-Heisenberg models respectively on the hyperhoneycomb and hyperoctagon lattices, both at zero and finite-temperature, in the thermodynamic limit. Our analysis relies on advanced tensor network (TN) simulations based on graph Projected Entangled-Pair States (gPEPS). We map out the TN phase diagrams of the models and characterize their underlying gapped and gapless phases both at zero and finite temperature. In particular, we demonstrate how cooling down the hyperhoneycomb system from high-temperature leads to fractionalization of spins to itinerant Majorana fermions and gauge fields that occurs in two separate temperature regimes, leaving their fingerprint on specific heat as a double-peak feature as well as on other quantities such as the thermal entropy, spin-spin correlations and bond entropy. Using the Majorana representation of the Kitaev model, we further show that the low-temperature thermal transition to the Kitaev quantum spin liquid (QSL) phase is associated with the non-trivial Majorana band topology and the presence of Weyl nodes, which manifests itself via non-vanishing Chern number and finite thermal Hall conductivity. Beyond the pure Kitaev limit, we study the 3D Kitaev-Heisenberg (KH) model on the hyperoctagon lattice and extract the full phase diagram for different Heisenberg couplings. We further explore the thermodynamic properties of the magnetically-ordered regions in the KH model and show that, in contrast to the QSL phase, here the thermal phase transition follows the standard Landau symmetry-breaking theory.