论文标题

核心偏离超新星的无线电光度精神函数

The Radio Luminosity-Risetime Function of Core-Collapse Supernovae

论文作者

Bietenholz, Michael F., Bartel, N., Argo, M., Dua, R., Ryder, S., Soderberg, A.

论文摘要

我们从文献以及我们自己的和档案数据中组装了大量的2-10 GHz无线电通量密度测量和294个不同超新星(SNE)的上限。仅检测到31%的SNE。我们使用两参数模型来表征峰附近的SN灯弯曲,其中$ t _ {\ rm pk} $是将峰值上升到峰值的时候,而$ l _ {\ rm pk} $在该峰值处的光谱发光度。从$ d <100 $ mpc中的所有样本中,我们都会发现$ t _ {\ rm pk} = 10^{1.7 \ pm0.9} $ d,以及$ l _ {\ rm pk} = 10^{25.5 \ pm1.6} $ erg s $^s $^$^$^$^$^$^$^$^$ 1} $^ - Sne将具有$ l _ {\ rm PK} <10^{25.5} $ erg s $^{ - 1} $ hz $^{ - 1} $。这些$ l _ {\ rm pk} $值是仅检测到的SNE的$ 30倍。类型I B/C和II(不包括IIN)的平均值相似为$ L _ {\ rm PK} $,但前者的范围更大,而ITy IIN类型的范围更高,具有$ 10倍的值,而$ l _ {\ rm PK} = 10^{\ rm pk} = 10^{26.5 \ pm1.1} $ erg s $ erg s $^$^$}对于$ t _ {\ rm pk} $,类型I b/c的$ t _ {\ rm pk} $仅为$ 10^{1.1 \ pm0.5} $ d type ii具有$ t _ {\ rm pk} = 10^= 10^{1.6 \ pm1.0} $和type iin type iin typ ii t y types iin和= 10^{3.1 \ pm0.7} $ d。我们还估计了祖细胞减少率的分布,$ \ dot m $,并找到日志$ _ {10}(\ dot m/$ msol)yr $^{ - 1} $的平均值和标准偏差是$ -5.4 \ pm1.2 $和$ -6.9 \ pm1.4 $(假设$ v _ {\ rm wind} = 10 $ km s $^{ - 1} $用于II型SNE类型IIN类型IIN。

We assemble a large set of 2-10 GHz radio flux density measurements and upper limits of 294 different supernovae (SNe), from the literature and our own and archival data. Only 31% of the SNe were detected. We characterize the SN lightcurves near the peak using a two-parameter model, with $t_{\rm pk}$ being the time to rise to a peak and $L_{\rm pk}$ the spectral luminosity at that peak. Over all SNe in our sample at $D<100$ Mpc, we find that $t_{\rm pk} = 10^{1.7\pm0.9}$ d, and that $L_{\rm pk} = 10^{25.5\pm1.6}$ erg s$^{-1}$ Hz$^{-1}$, and therefore that generally, 50% of SNe will have $L_{\rm pk} < 10^{25.5}$ erg s$^{-1}$ Hz$^{-1}$. These $L_{\rm pk}$ values are ~30 times lower than those for only detected SNe. Types I b/c and II (excluding IIn's) have similar mean values of $L_{\rm pk}$ but the former have a wider range, whereas Type IIn SNe have ~10 times higher values with $L_{\rm pk} = 10^{26.5\pm1.1}$ erg s$^{-1}$ Hz$^{-1}$. As for $t_{\rm pk}$, Type I b/c have $t_{\rm pk}$ of only $10^{1.1\pm0.5}$ d while Type II have $t_{\rm pk} = 10^{1.6\pm1.0}$ and Type IIn the longest timescales with $t_{\rm pk} = 10^{3.1\pm0.7}$ d. We also estimate the distribution of progenitor mass-loss rates, $\dot M$, and find the mean and standard deviation of log$_{10}(\dot M/$Msol) yr$^{-1}$ are $-5.4\pm1.2$ (assuming $v_{\rm wind}=1000$ km s$^{-1}$) for Type I~b/c SNe, and $-6.9\pm1.4$ (assuming $v_{\rm wind} = 10$ km s$^{-1}$ for Type II SNe excluding Type IIn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源