论文标题

极化从原位电子显微镜观测转换的潜在机制

Latent mechanisms of polarization switching from in situ electron microscopy observations

论文作者

Ignatans, Reinis, Ziatdinov, Maxim, Vasudevan, Rama, Valleti, Mani, Tileli, Vasiliki, Kalinin, Sergei V.

论文摘要

原位扫描透射电子显微镜可以观察铁电材料中的域动力学,这是外部应用偏置和温度的函数。最终的数据集包含有关极化开关和相变机制的大量信息。但是,由于各种可能的配置,其中许多是退化的,因此从观测数据集中识别这些机制仍然存在问题。在这里,我们介绍了一种基于旋转不变的变分自动编码器(VAE)的方法,该方法使数据的潜在空间表示具有多个真实空间旋转等效的变体,并映射到了同一潜在空间描述符。通过改变VAE中的训练子图像的大小,我们将结构描述符中的复杂程度从简单域壁检测到开关途径的识别。这为探索介质电子,扫描探针,光学和化学成像探索动态数据提供了强大的工具。此外,这项工作增加了将物理约束纳入机器和深入学习方法的知识的越来越多,以改善学到的物理现象描述符。

In situ scanning transmission electron microscopy enables observation of the domain dynamics in ferroelectric materials as a function of externally applied bias and temperature. The resultant data sets contain a wealth of information on polarization switching and phase transition mechanisms. However, identification of these mechanisms from observational data sets has remained a problem due to a large variety of possible configurations, many of which are degenerate. Here, we introduce an approach based on rotationally invariant variational autoencoder (VAE), which enables learning a latent space representation of the data with multiple real-space rotationally equivalent variants mapped to the same latent space descriptors. By varying the size of training sub-images in the VAE, we tune the degree of complexity in the structural descriptors from simple domain wall detection to the identification of switching pathways. This yields a powerful tool for the exploration of the dynamic data in mesoscopic electron, scanning probe, optical, and chemical imaging. Moreover, this work adds to the growing body of knowledge of incorporating physical constraints into the machine and deep-learning methods to improve learned descriptors of physical phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源