论文标题
流体流量估计的神经网络的概括技术
Generalization techniques of neural networks for fluid flow estimation
论文作者
论文摘要
我们演示了几种技术,以鼓励神经网络的实际用途进行流体流量估计。在本文中,考虑了机器学习到流体动力学的应用的三种挑战:1。机器学习结果的可解释性,2。从培训数据中批量批量和3个。神经网络的概括性。对于可解释性,我们首先展示了两种方法,可以观察神经网络的内部程序,即隐藏层的可视化以及梯度加权类别激活映射(GRAD-CAM)的应用,应用于规范流体流动流量估计问题 - $(1)$ drag trag系数估算cylinder唤醒和$(2)$ velecity $ velocity tarmestion tarmestion tarmestiatiation。例证说,两种方法都可以成功地告诉我们基于机器学习估计的重要能力的证据。然后,我们利用一些技术来批量培训数据,以进行超分辨率分析和圆柱唤醒和NOAA海面温度数据的时间预测,以证明可以为流体流动问题提供足够的训练培训数据,这些神经网络可以实现有限的训练数据。通过考虑训练数据间/外推的观点,考虑到两个平行缸背后的超级分辨率,还通过考虑机器学习模型的普遍性。我们发现,即使对于距离因子的测试配置,也可以很好地重建两个圆柱体之间复杂相互作用产生的各种流动模式。本文可能是朝着层流和湍流问题的神经网络实际使用的重要一步。
We demonstrate several techniques to encourage practical uses of neural networks for fluid flow estimation. In the present paper, three perspectives which are remaining challenges for applications of machine learning to fluid dynamics are considered: 1. interpretability of machine-learned results, 2. bulking out of training data, and 3. generalizability of neural networks. For the interpretability, we first demonstrate two methods to observe the internal procedure of neural networks, i.e., visualization of hidden layers and application of gradient-weighted class activation mapping (Grad-CAM), applied to canonical fluid flow estimation problems -- $(1)$ drag coefficient estimation of a cylinder wake and $(2)$ velocity estimation from particle images. It is exemplified that both approaches can successfully tell us evidences of the great capability of machine learning-based estimations. We then utilize some techniques to bulk out training data for super-resolution analysis and temporal prediction for cylinder wake and NOAA sea surface temperature data to demonstrate that sufficient training of neural networks with limited amount of training data can be achieved for fluid flow problems. The generalizability of machine learning model is also discussed by accounting for the perspectives of inter/extrapolation of training data, considering super-resolution of wakes behind two parallel cylinders. We find that various flow patterns generated by complex interaction between two cylinders can be reconstructed well, even for the test configurations regarding the distance factor. The present paper can be a significant step toward practical uses of neural networks for both laminar and turbulent flow problems.