论文标题

有效的基于预测指标的神经体系结构搜索的采样

Efficient Sampling for Predictor-Based Neural Architecture Search

论文作者

Mauch, Lukas, Tiedemann, Stephen, Garcia, Javier Alonso, Cong, Bac Nguyen, Yoshiyama, Kazuki, Cardinaux, Fabien, Kemp, Thomas

论文摘要

最近,基于预测指标的算法是一种有前途的神经体系结构搜索方法(NAS)。对于NAS,我们通常必须计算大量深神经网络(DNN)的验证精度,什么是计算复杂的。基于预测变量的NAS算法解决了此问题。他们训练一个可以直接从其网络结构中推断出DNN的验证精度的代理模型。在优化过程中,代理可用于缩小必须计算真正验证精度的体系结构的数量,这是什么使基于预测的算法有效。通常,我们计算网络搜索空间中所有DNN的代理人,并选择最大化代理作为优化的候选者的代理。但是,这在实践中是很棘手的,因为搜索空间通常很大,并且包含数十亿个网络架构。本文的贡献是三重的:1)我们定义了样本效率增益以比较不同的基于预测的NAS算法。 2)我们在NASBENCH-101数据集上进行实验,并表明,如果仅针对搜索空间的子集计算代理,则基于预测器的算法的样本效率会大大降低。 3)我们表明,如果我们选择以智能方式评估代理的搜索空间子集,则可以重新恢复具有访问完整搜索空间的原始基于预测算法的示例效率。在实践中,这是使基于预测变量的NAS算法有用的重要步骤。

Recently, predictor-based algorithms emerged as a promising approach for neural architecture search (NAS). For NAS, we typically have to calculate the validation accuracy of a large number of Deep Neural Networks (DNNs), what is computationally complex. Predictor-based NAS algorithms address this problem. They train a proxy model that can infer the validation accuracy of DNNs directly from their network structure. During optimization, the proxy can be used to narrow down the number of architectures for which the true validation accuracy must be computed, what makes predictor-based algorithms sample efficient. Usually, we compute the proxy for all DNNs in the network search space and pick those that maximize the proxy as candidates for optimization. However, that is intractable in practice, because the search spaces are often very large and contain billions of network architectures. The contributions of this paper are threefold: 1) We define a sample efficiency gain to compare different predictor-based NAS algorithms. 2) We conduct experiments on the NASBench-101 dataset and show that the sample efficiency of predictor-based algorithms decreases dramatically if the proxy is only computed for a subset of the search space. 3) We show that if we choose the subset of the search space on which the proxy is evaluated in a smart way, the sample efficiency of the original predictor-based algorithm that has access to the full search space can be regained. This is an important step to make predictor-based NAS algorithms useful, in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源