论文标题
CASU2NET:通过两步的早期融合级联的统一网络,用于离岸风力涡轮机的故障检测
CASU2Net: Cascaded Unification Network by a Two-step Early Fusion for Fault Detection in Offshore Wind Turbines
论文作者
论文摘要
本文提出了一种新型的基于特征融合的深度学习模型(称为CASU2NET),用于离岸风力涡轮机中的故障检测。提出的CASU2NET模型使两步的早期融合效果在最后阶段丰富了特征。此外,由于先前的研究在建模和预测时没有考虑不确定性,因此我们利用蒙特卡洛辍学(MC辍学)来提高结果的确定性。为了设计故障检测模型,我们使用五个传感器和一个滑动窗口来利用从传感器获得的原始时间序列数据中包含的固有时间信息。提出的模型使用多个传感器变量之间的非线性关系以及每个传感器对其他传感器的时间依赖性,这大大增加了故障检测模型的性能。使用10倍的交叉验证方法来验证模型的概括并评估分类指标。为了评估模型的性能,使用了具有监督控制和数据采集(SCADA)的基准浮动海上风力涡轮机(FOWT)的模拟数据。结果表明,所提出的模型将准确地披露和分类超过99%的故障。此外,它是可推广的,可用于检测不同类型系统的故障。
This paper presents a novel feature fusion-based deep learning model (called CASU2Net) for fault detection in offshore wind turbines. The proposed CASU2Net model benefits of a two-step early fusion to enrich features in the final stage. Moreover, since previous studies did not consider uncertainty while model developing and also predictions, we take advantage of Monte Carlo dropout (MC dropout) to enhance the certainty of the results. To design fault detection model, we use five sensors and a sliding window to exploit the inherent temporal information contained in the raw time-series data obtained from sensors. The proposed model uses the nonlinear relationships among multiple sensor variables and the temporal dependency of each sensor on others which considerably increases the performance of fault detection model. A 10-fold cross-validation approach is used to verify the generalization of the model and evaluate the classification metrics. To evaluate the performance of the model, simulated data from a benchmark floating offshore wind turbine (FOWT) with supervisory control and data acquisition (SCADA) are used. The results illustrate that the proposed model would accurately disclose and classify more than 99% of the faults. Moreover, it is generalizable and can be used to detect faults for different types of systems.