论文标题

与Gushel-Mukai表面相关的双EPW六六元

Double EPW sextics associated to Gushel-Mukai surfaces

论文作者

Beri, Pietro

论文摘要

O'Grady的作品允许将二维Gushel-Mukai品种与K3表面(双EPW六六分)相关联。我们表征了K3表面,其相关的双EPW六重奏是光滑的。结果,我们能够为某些具有Hyper-Kähler歧管的平滑双EPW六六分子的家族产生符合性动作。我们还为尺寸2及更高的Gushel-Mukai品种的自动形态群提供了界限。

Works by O'Grady allow to associate to a 2-dimensional Gushel-Mukai variety, which is a K3 surface, a double EPW sextic. We characterize the K3 surfaces whose associated double EPW sextic is smooth. As a consequence, we are able to produce symplectic actions on some families of smooth double EPW sextics which are hyper-Kähler manifolds. We also provide bounds for the automorphism group of Gushel-Mukai varieties in dimension 2 and higher.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源