论文标题

贫瘠的高原对无梯度优化的影响

Effect of barren plateaus on gradient-free optimization

论文作者

Arrasmith, Andrew, Cerezo, M., Czarnik, Piotr, Cincio, Lukasz, Coles, Patrick J.

论文摘要

贫瘠的高原景观对应于量子数呈指数级消失的梯度。已经证明了具有深层电路或全球成本函数的变异量子算法和量子神经网络的这种景观。出于明显的原因,预计基于梯度的优化器将受到贫瘠的高原影响。但是,是否对无梯度优化者受到影响是一个辩论的话题,其中一些人认为无梯度的方法不受贫瘠的高原影响。在这里,我们表明,实际上,无梯度的优化器不能解决贫瘠的高原问题。我们的主要结果证明,成本函数差异是在无梯度优化中做出决策的基础,在贫瘠的高原中被指数抑制。因此,没有指数精度,无梯度优化器将不会在优化中取得进展。我们通过在贫瘠的高原中训练几个无梯度优化器(Nelder-Mead,Powell和Cobyla算法)来确认这一点,并表明优化中所需的射击数量随量子数的数量而增长。

Barren plateau landscapes correspond to gradients that vanish exponentially in the number of qubits. Such landscapes have been demonstrated for variational quantum algorithms and quantum neural networks with either deep circuits or global cost functions. For obvious reasons, it is expected that gradient-based optimizers will be significantly affected by barren plateaus. However, whether or not gradient-free optimizers are impacted is a topic of debate, with some arguing that gradient-free approaches are unaffected by barren plateaus. Here we show that, indeed, gradient-free optimizers do not solve the barren plateau problem. Our main result proves that cost function differences, which are the basis for making decisions in a gradient-free optimization, are exponentially suppressed in a barren plateau. Hence, without exponential precision, gradient-free optimizers will not make progress in the optimization. We numerically confirm this by training in a barren plateau with several gradient-free optimizers (Nelder-Mead, Powell, and COBYLA algorithms), and show that the numbers of shots required in the optimization grows exponentially with the number of qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源