论文标题

同源多项式系数和交替表面链路的扭曲数量

Homological Polynomial Coefficients and the Twist Number of Alternating Surface Links

论文作者

Will, David A.

论文摘要

对于$ d $ a缩小的交替表面链路图,我们就多项式不变的系数限制了$ d $的扭曲数。为此,我们介绍了Krushkal定义的同源Kauffman支架的概括。结合Futer,Kalfagianni和Purcell的作品,根据这些系数,这产生了一类交替的表面链路的双曲体积。

For $D$ a reduced alternating surface link diagram, we bound the twist number of $D$ in terms of the coefficients of a polynomial invariant. To this end, we introduce a generalization of the homological Kauffman bracket defined by Krushkal. Combined with work of Futer, Kalfagianni, and Purcell, this yields a bound for the hyperbolic volume of a class of alternating surface links in terms of these coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源