论文标题
学习有效的量子磁铁的旋转哈密顿量
Learning Effective Spin Hamiltonian of Quantum Magnet
论文作者
论文摘要
量子磁铁中的相互作用的旋转可以配合并表现出外来状态,例如量子自旋液体。为了探索这种有趣状态的物质化,量子磁体的有效自旋哈密顿量的确定是一个重要的,而同时,非常具有挑战性的逆多体问题。为了有效地从宏观实验测量中学习微观自旋哈密顿量,在这里,我们提出了一种无偏的汉密尔顿搜索方法,将各种优化策略(包括自动分化和贝叶斯优化等)与精确的对角色和许多体体热量量量量计算相结合。我们通过将其应用于训练从给定的旋转汉密尔顿的训练热数据,然后将其应用于在自旋链复合硝酸盐和三角形晶格材料TMMGGAO4中测得的实验数据,从而展示了精度和功能。在研究有趣的旋转液体候选磁铁和相关电子材料的研究中,这种自动汉密尔顿搜索构成了一种非常有前途的方法。
Interacting spins in quantum magnet can cooperate and exhibit exotic states like the quantum spin liquid. To explore the materialization of such intriguing states, the determination of effective spin Hamiltonian of the quantum magnet is thus an important, while at the same time, very challenging inverse many-body problem. To efficiently learn the microscopic spin Hamiltonian from the macroscopic experimental measurements, here we propose an unbiased Hamiltonian searching approach that combines various optimization strategies, including the automatic differentiation and Bayesian optimization, etc, with the exact diagonalization and many-body thermal tensor network calculations. We showcase the accuracy and powerfulness by applying it to training thermal data generated from a given spin Hamiltonian, and then to realistic experimental data measured in the spin-chain compound Copper Nitrate and triangular-lattice materials TmMgGaO4. This automatic Hamiltonian searching constitutes a very promising approach in the studies of the intriguing spin liquid candidate magnets and correlated electron materials in general.