论文标题
从辍学的纵向数据中推断人口部分平均值的贝叶斯半参数方法
A Bayesian semi-parametric approach for inference on the population partly conditional mean from longitudinal data with dropout
论文作者
论文摘要
使用纵向数据对记忆轨迹进行的研究通常会导致高度代表性的样本,这是由于选择性的研究入学和损耗。额外的偏见来自实践效果,由于对测试内容或上下文的熟悉,导致改善或保持性能。这些挑战可能会偏向研究结果,并严重扭曲对目标人群的推广能力。在这项研究中,我们提出了一种估计在特定时间点生存的纵向结果条件的有限种群平均值的方法。当纵向辅助信息以目标群体闻名时,我们为人群推断开发了灵活的贝叶斯半参数预测量。我们评估结果对无法测试的假设的敏感性,并进一步将我们的方法与模拟研究中用于人群推断的其他方法进行了比较。提出的方法是由Betula纵向队列研究的15年纵向数据激励的。我们将我们的方法应用于情节记忆中的寿命轨迹,目的是将发现概括为目标人群。
Studies of memory trajectories using longitudinal data often result in highly non-representative samples due to selective study enrollment and attrition. An additional bias comes from practice effects that result in improved or maintained performance due to familiarity with test content or context. These challenges may bias study findings and severely distort the ability to generalize to the target population. In this study we propose an approach for estimating the finite population mean of a longitudinal outcome conditioning on being alive at a specific time point. We develop a flexible Bayesian semi-parametric predictive estimator for population inference when longitudinal auxiliary information is known for the target population. We evaluate sensitivity of the results to untestable assumptions and further compare our approach to other methods used for population inference in a simulation study. The proposed approach is motivated by 15-year longitudinal data from the Betula longitudinal cohort study. We apply our approach to estimate lifespan trajectories in episodic memory, with the aim to generalize findings to a target population.