论文标题
预测孔隙率影响的最后阶段烧结生长
Predicting final stage sintering grain growth affected by porosity
论文作者
论文摘要
谷物的生长对弹道,生物材料,珠宝等领域的透明烧结材料的质量具有明确的影响。在最终阶段烧结的精确时刻控制烧结轨迹是获得高性能,完全浓密的纳米 - 纳米 - 纳米 - 陶瓷的主要辛苦挑战之一。但是,烧结的最后阶段涉及消除孔隙率/谷物生长和过渡机制之间非常复杂的耦合。这种复杂性使预测烧结轨迹非常困难,并且大多数透明的材料生产通过使用昂贵的高压方法(例如热等静力按压(HIP))来消除此问题。为了寻求无压力的透明材料过程,本文解决了预测从谷物生长开始(在高孔隙率区域)到MGAL 2 O 4尖晶石的全密度的晶粒生长的挑战。我们提出了一种综合建模方法,该方法将理论模型(例如Zhao \&Harmer's和Olevsky的方程式)提供了,以准确预测最终阶段烧结的复杂晶粒生长过渡区域。这种建模方法通过基础动力学实验鉴定开辟了对微观结构开发的数值探索的可能性。
Grain growth has a definitive impact on the quality of transparent sintered materials in areas such as ballistics, biomaterials, jewelry, etc. Controlling the sintering trajectory at the precise moment of final stage sintering is one of the main sintering challenges for obtaining highperformance, fully-dense nano-ceramics. However, the final stage of sintering involves a very complex coupling between the rate of porosity elimination/grain growth and transition mechanisms. This complexity makes predicting the sintering trajectory very difficult, and most transparent material production escapes this problem by using expensive high-pressure methods such as hot isostatic pressing (HIP). In the quest for a pressureless transparent material process, this paper addresses the challenge of predicting grain growth in the transition domain from the grain growth onset (in a high porosity region) to full density for MgAl 2 O 4 spinel. We present a comprehensive modeling approach linking theoretical models such as Zhao \& Harmer's and Olevsky's equations to accurately predict the complex grain growth transition region of final stage sintering. This modeling approach opens up the possibility for numerical exploration of microstructure development via underlying kinetics experimental identification.