论文标题

一条可以运行所有这些的行:超级巨大的中微子线性响应$ n $ body模拟

One line to run them all: SuperEasy massive neutrino linear response in $N$-body simulations

论文作者

Chen, Joe Zhiyu, Upadhye, Amol, Wong, Yvonne Y. Y.

论文摘要

我们在这项工作中介绍了一种新颖而又极为简单的方法,可将大量中微子纳入宇宙学$ n $ body模拟中。这种所谓的“超级线性线性响应”方法基于聚类和自由流限制中无碰撞玻尔兹曼方程的分析解决方案,然后通过与宇宙学模型模型模型参数的简单代数表达相关的合理函数插值函数与宇宙学依赖性系数相关。结果是对重力电位的{\ it单行修改},仅需要冷的密度对比度作为实时输入,并且可以将其合并到带有粒子组件的任何$ n $ body代码中,没有额外的实施成本。为了展示其功能,我们在公开可用的\ gadgetCode {}代码中实现了超级方法,并证明,对于不超过$ \ summ_ν\ simeq 1 $ ev的中微子质量总和,总物质和冷功率谱是sub-1 \%\%\%\%和sub-0.1 \%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%。除了与现有的大规模中微子模拟方法相比,超级中微子模拟方法的实施成本最低之外,超级气息的方法具有更高的内存效率,相对于标准$λ$ CDM模拟而没有运行时开销,并且不需要后处理。该方法的最小性质允许有限的计算资源转移到对感兴趣的其他物理效果(例如通过流体动力学)建模的其他物理效应。

We present in this work a novel and yet extremely simple method for incorporating the effects of massive neutrinos in cosmological $N$-body simulations. This so-called "SuperEasy linear response" approach is based upon analytical solutions to the collisionless Boltzmann equation in the clustering and free-streaming limits, which are then connected by a rational function interpolation function with cosmology-dependent coefficients given by simple algebraic expressions of the cosmological model parameters. The outcome is a {\it one-line modification} to the gravitational potential that requires only the cold matter density contrast as a real-time input, and that can be incorporated into any $N$-body code with a Particle--Mesh component with no additional implementation cost. To demonstrate its power, we implement the SuperEasy method in the publicly available \gadgetcode{} code, and show that for neutrino mass sums not exceeding $\sum m_ν\simeq 1$ eV, the total matter and cold matter power spectra are in sub-1\% and sub-0.1\% agreement with those from state-of-the-art linear response simulations in literature. Aside from its minimal implementation cost, compared with existing massive neutrino simulation methods, the SuperEasy approach has better memory efficiency, incurs no runtime overhead relative to a standard $Λ$CDM simulation, and requires no post-processing. The minimal nature of the method allows limited computational resources to be diverted to modelling other physical effects of interest, e.g., baryonic physics via hydrodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源