论文标题

在全天空搜索连续重力波中使用过多的功率法和卷积神经网络

Use of Excess Power Method and Convolutional Neural Network in All-Sky Search for Continuous Gravitational Waves

论文作者

Yamamoto, Takahiro S., Tanaka, Takahiro

论文摘要

连续重力波的信号的持续时间比观测周期更长。即使源框架中的波形是单色的,由于检测器的运动,我们也会以调制频率观察波形。如果源位置未知,则需要许多具有不同天空位置的模板来解调频率,并且所需的巨大计算成本限制了相干搜索的适用参数区域。在这项工作中,我们提出并检查了一种选择候选人的新方法,该方法仅通过跟踪选定的候选人来降低连贯搜索的成本。作为第一步,我们考虑了一个理想化的情况,在这种情况下,只有一个具有100 \%占空比的单探测器可用,并且其检测器噪声通过固定的高斯噪声近似。另外,我们假设信号没有启动,偏振角,倾斜角,并且初始阶段固定为$ψ= 0 $,$ \cosι= 1 $,$ ϕ_0 = 0 $,并且它们被视为已知参数。我们结合了几种方法:1)短期傅立叶变换与重新采样的数据,使源的地球运动在某个参考方向上取消,2)通过从短时傅立叶变换中拾取特定频率箱中的振幅中获得的时间序列的傅立叶变换中的过量功率搜索,以及深度学习方法,以及3)进一步构成源源天空源的位置。估计计算成本和检测概率。进行注射测试以检查检测概率的有效性。我们发现我们的方法值得进一步研究,以分析$ O(10^7)$ sec菌株数据。

The signal of continuous gravitational waves has a longer duration than the observation period. Even if the waveform in the source frame is monochromatic, we will observe the waveform with modulated frequencies due to the motion of the detector. If the source location is unknown, a lot of templates having different sky positions are required to demodulate the frequency, and the required huge computational cost restricts the applicable parameter region of coherent search. In this work, we propose and examine a new method to select candidates, which reduces the cost of coherent search by following-up only the selected candidates. As a first step, we consider an idealized situation in which only a single-detector having 100\% duty cycle is available and its detector noise is approximated by the stationary Gaussian noise. Also, we assume the signal has no spindown and the polarization angle, the inclination angle, and the initial phase are fixed to be $ψ=0$, $\cosι=1$, and $ϕ_0=0$, and they are treated as known parameters. We combine several methods: 1) the short-time Fourier transform with the re-sampled data such that the Earth motion for the source is canceled in some reference direction, 2) the excess power search in the Fourier transform of the time series obtained by picking up the amplitude in a particular frequency bin from the short-time Fourier transform data, and 3) the deep learning method to further constrain the source sky position. The computational cost and the detection probability are estimated. The injection test is carried out to check the validity of the detection probability. We find that our method is worthy of further study for analyzing $O(10^7)$sec strain data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源