论文标题
在相关的赫尔夫里奇能量的接触线上,欧拉 - 拉格兰奇方程的较低规律性假设较低
Lower regularity assumption for an Euler-Lagrange equation on the contact line of the phase dependent Helfrich energy
论文作者
论文摘要
我们检查了相关的Helfrich能量,并在相位分离线上显示了Euler-Lagrange方程。例如Jülicher-Lipowski和后来的Elliot-Stinner。在这里,我们能够将此结果的规律性假设降低到分离线的$ c^{1,1} $。在证明中,我们利用签名距离功能采用了精心选择的测试功能。
We examine the phase dependent Helfrich energy and show an Euler-Lagrange equation on the phase seperation line. This result has already been observed by e.g. Jülicher-Lipowski and later Elliot-Stinner. Here we are able to lower the regularity assumption for this result down to $C^{1,1}$ for the seperation line. In the proof we employ a carefully choosen test function utilising the signed distance function.