论文标题
在退化的ergodic环境中,下高斯热核边界为随机电导模型
Lower Gaussian heat kernel bounds for the Random Conductance Model in a degenerate ergodic environment
论文作者
论文摘要
我们研究了$ \ mathbb {z}^d $上的随机电导模型,并使用带有无限的电导率。在多项式矩情况下,我们证明了在热核上的高斯下限,并且对电导的相关性有一些其他假设。证明是基于建立良好的链接技术。我们还获得了绿色功能的界限。
We study the random conductance model on $\mathbb{Z}^d$ with ergodic, unbounded conductances. We prove a Gaussian lower bound on the heat kernel given a polynomial moment condition and some additional assumptions on the correlations of the conductances. The proof is based on the well-established chaining technique. We also obtain bounds on the Green's function.