论文标题

非线性模型模型的混合模型的自适应学习蒸馏柱的预测控制

Adaptive Learning of Hybrid Models for Nonlinear Model Predictive Control of Distillation Columns

论文作者

Lüthje, Jannik T., Schulze, Jan C., Caspari, Adrian, Mhamdi, Adel, Mitsos, Alexander, Schäfer, Pascal

论文摘要

非线性模型预测控制(NMPC)需要准确和计算有效的植物模型。我们以前的工作表明,可以通过通过在离线求解解决方案上培训的人工神经网络(ANN)来替换方程组(ANN)来替换方程组的部分来增强蒸馏柱的经典隔室化模型方法,以提高计算性能。在现实生活中,缺乏用于数据生成的高保真模型可以防止这种方法的部署。因此,我们提出了一种仅利用植物测量数据的方法,从小的初始数据集开始,然后不断适应新测量的数据。在硅中检查了所提出的方法的功效,以获取文献中的蒸馏柱。为此,我们首先调整了最初基于隔离为阶段 - 聚集过程的隔板化的混合机械/数据驱动的建模方法,该方法将其定制为自适应学习框架内的应用程序。其次,我们应用了一种自适应学习算法,该算法训练ANN在新可用的数据上替换固定阶段到阶段计算。我们将混合模型的自适应学习应用于调节性NMPC框架中,并进行闭环模拟。我们证明,通过使用所提出的方法,与非自适应方法相比,在适用实时的方法的同时,控制性能可以稳步改善。此外,我们表明,在使用过多的离线生成数据训练的模型或原始高保真模型时,可以在极限中接触性能。

Nonlinear model predictive control (NMPC) requires accurate and computationally efficient plant models. Our previous work has shown that the classical compartmentalization model reduction approach for distillation columns can be enhanced by replacing parts of the system of equations by artificial neural networks (ANNs) trained on offline solved solutions to improve computational performance. In real-life applications, the absence of a high-fidelity model for data generation can, however, prevent the deployment of this approach. Therefore, we propose a method that utilizes solely plant measurement data, starting from a small initial data set and then continuously adapting to newly measured data. The efficacy of the proposed approach is examined in silico for a distillation column from literature. To this end, we first adjust our reduced hybrid mechanistic/data-driven modeling approach that originally builds on compartmentalization to a stage-aggregation procedure, tailoring it for the application within the adaptive learning framework. Second, we apply an adaptive learning algorithm that trains the ANNs replacing the stationary stage-to-stage calculations on newly available data. We apply the adaptive learning of the hybrid model within a regulatory NMPC framework and conduct closed-loop simulations. We demonstrate that by using the proposed method, the control performance can be steadily improved over time compared to a non-adaptive approach while being real-time applicable. Moreover, we show that the performance when using either a model trained on excessive amounts of offline generated data or the original high-fidelity model can be approached in the limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源