论文标题
低阶面和边缘虚拟元素空间的插值和稳定性
Interpolation and stability properties of low order face and edge virtual element spaces
论文作者
论文摘要
我们分析了2D和3D低阶虚拟元素面部和边缘空间的插值特性,这些元素面部和边缘空间将nédélec和raviart-thomas多项式概括为多边形多项式网格。此外,我们研究了相关的$ l^2 $离散双线性形式的稳定性,该表格通常出现在电磁中问题的虚拟元素离散化中。
We analyse the interpolation properties of 2D and 3D low order virtual element face and edge spaces, which generalize Nédélec and Raviart-Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated $L^2$ discrete bilinear forms, which typically appear in the virtual element discretization of problems in electromagnetism.