论文标题
h $ _ {3} $ s $ _ {1-x} $ z $ _x $(z = c,si)
Hole-Doped Room-Temperature Superconductivity in H$_{3}$S$_{1-x}$Z$_x$ (Z=C, Si)
论文作者
论文摘要
我们研究了C和Si原子对S原子的低级取代对H $ _3 $ S的超导性与Megabar压力下的$ IM \ bar {3} M $结构的超导性的影响。孔掺杂可以微调费米的能量,以达到电子密度 - 峰值最大化电子偶联。对于H $ _3 $ S $ _ {0.962} $ c $ _ {0.038} $,在260 GPA和H $ _3 $ _3 $ _3 $ _3 $ _ {0.960} $ _ {0.960} $ si $ _ {0.040} $ {0.0040} $ at 230 ga前者可以为在高度压缩的C-S-H系统中对室温超导性的最新实验观察提供了解释[自然586,373-377(2020)]。我们的工作开辟了一条新的途径,以实质性地提高富含氢的材料的临界温度。
We examine the effects of the low-level substitution of S atoms by C and Si atoms on the superconductivity of H$_3$S with the $Im\bar{3}m$ structure at megabar pressure. The hole doping can fine-tune the Fermi energy to reach the electronic density-of-states peak maximizing the electron-phonon coupling. This can boost the critical temperature from the original 203 K to 289 K and 283 K, respectively, for H$_3$S$_{0.962}$C$_{0.038}$ at 260 GPa and H$_3$S$_{0.960}$Si$_{0.040}$ at 230 GPa. The former may provide an explanation for the recent experimental observation of room-temperature superconductivity in a highly compressed C-S-H system [Nature 586, 373-377 (2020)]. Our work opens a new avenue for substantially raising the critical temperatures of hydrogen-rich materials.