论文标题

关于周期性非线性schrödinger方程的全球适应性

On the global well-posedness for the periodic quintic nonlinear Schrödinger equation

论文作者

Yu, Xueying, Yue, Haitian

论文摘要

在本文中,我们考虑了Quintic的初始值问题,在$ \ bbb t^2 $上散发非线性schrödinger方程,并在关键的sobolev space $ h^{\ frac {\ frac {1} {2}}}}(\ bbb t^2)$中使用常规数据。我们表明,如果解决方案保持在$ h^{\ frac {1} {2}}}}}(\ bbb t^2)$中的最大间隔中,那么该解决方案在$ \ bbb t^2 $中的全球范围都很好。

In this paper, we consider the initial value problem for the quintic, defocusing nonlinear Schrödinger equation on $\Bbb T^2$ with general data in the critical Sobolev space $H^{\frac{1}{2}} (\Bbb T^2)$. We show that if a solution remains bounded in $H^{\frac{1}{2}} (\Bbb T^2)$ in its maximal interval of existence, then the solution is globally well-posed in $\Bbb T^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源