论文标题

Lipschitz代数和Lipschitz的空间在无限的度量空间上

Lipschitz algebras and Lipschitz-free spaces over unbounded metric spaces

论文作者

Albiac, Fernando, Ansorena, Jose L., Cuth, Marek, Doucha, Michal

论文摘要

我们提出了一种将任意(无限制的)度量空间$ \ MATHCAL {M} $转入有限的度量空间$ \ Mathcal {B} $的方法,以使得相应的无lipschitz-fripschitz-fripsChitz-fripsChitz-fripsChitz-fripsChitz-fripsChitz-fripschitz-fripschitz-fripschitz-fripsCal $ \ Mathcal {f}(f}(\ Mathcal {m})$ and $ \ Mathcal $ artcal $ artcal {f}同构。我们提供的构造在薄弱的意义上起作用,并且具有明确的优势。除了其内在的理论兴趣外,它还具有许多应用程序,因为它允许将许多对Lipschitz的空间有效的参数传输到有限的空间上,并在无界空间上传递到无lipschitz的空间。此外,我们表明,通过稍微修改的点乘法,标量 - 值lipschitz的Space $ \ rm {lip} _0(\ Mathcal {m})$的lipschitz函数在任何(未绑定的)指数的Metric Space上在零(零)上消失了,它是Banach Algebra,它是Banach Algebra,它的banach Algebra具有其Canonical Lipschitz NormChitz Norm。

We present a way to turn an arbitrary (unbounded) metric space $\mathcal{M}$ into a bounded metric space $\mathcal{B}$ in such a way that the corresponding Lipschitz-free spaces $\mathcal{F}(\mathcal{M})$ and $\mathcal{F}(\mathcal{B})$ are isomorphic. The construction we provide is functorial in a weak sense and has the advantage of being explicit. Apart from its intrinsic theoretical interest, it has many applications in that it allows to transfer many arguments valid for Lipschitz-free spaces over bounded spaces to Lipschitz-free spaces over unbounded spaces. Furthermore, we show that with a slightly modified point-wise multiplication, the space $\rm{Lip}_0(\mathcal{M})$ of scalar-valued Lipschitz functions vanishing at zero over any (unbounded) pointed metric space is a Banach algebra with its canonical Lipschitz norm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源