论文标题

沿斐波那契甚至是(几乎)可实现的

Fibonacci along even powers is (almost) realizable

论文作者

Moss, Patrick, Ward, Tom

论文摘要

如果整数序列是某些地图的周期点计数,则称为可实现。 fibonacci序列$(f_n)$没有此属性,沿正方形$(f_ {n^2})$采样的斐波那契序列也没有此属性。我们证明,这是与斐波那契序列的判别性相关的算术现象,它通过证明序列$(5f_ {n^2})$是可实现的。更普遍地,我们表明$(f_ {n^{2k-1}})$在特别强的意义上是无法实现的,而$(5f_ {n^{2k}})$对于任何$ k \ ge1 $都是可实现的。

An integer sequence is called realizable if it is the count of periodic points of some map. The Fibonacci sequence $(F_n)$ does not have this property, and the Fibonacci sequence sampled along the squares $(F_{n^2})$ also does not have this property. We prove that this is an arithmetic phenomenon related to the discriminant of the Fibonacci sequence, by showing that the sequence $(5F_{n^2})$ is realizable. More generally, we show that $(F_{n^{2k-1}})$ is not realizable in a particularly strong sense while $(5F_{n^{2k}})$ is realizable, for any $k\ge1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源