论文标题

通过流功能数据分析的硬件系统监视的视觉分析方法

A Visual Analytics Approach for Hardware System Monitoring with Streaming Functional Data Analysis

论文作者

Shilpika, Fnu, Fujiwara, Takanori, Sakamoto, Naohisa, Nonaka, Jorji, Ma, Kwan-Liu

论文摘要

许多现实世界的应用涉及分析时间依赖性现象,这些现象本质上是功能性的,由在连续体(例如时间)上变化的曲线组成。在分析连续数据时,功能数据分析(FDA)提供了实质性的好处,例如研究衍生物并限制数据排序的能力。但是,连续数据固有地具有无限的维度,并且对于长期序列,FDA方法通常会遭受高计算成本的影响。在更新FDA结果以持续到达数据时,分析问题变得更加具有挑战性。在本文中,我们提出了一种视觉分析方法,用于监视和审查从硬件系统流中流的时间序列数据,重点是通过使用FDA来识别异常值。为了在解决计算问题时执行FDA,我们引入了新的增量和渐进算法,这些算法迅速生成幅度形状(MS)图,该图传达了时间序列数据的功能幅度和外观外观。此外,通过将MS图与FDA版本的主成分分析结合使用,我们增强了分析师研究视觉识别的异常值的能力。我们通过使用现实世界数据集的两个使用方案来说明方法的有效性。最终的工具由使用现实世界流数据集的行业专家评估。

Many real-world applications involve analyzing time-dependent phenomena, which are intrinsically functional, consisting of curves varying over a continuum (e.g., time). When analyzing continuous data, functional data analysis (FDA) provides substantial benefits, such as the ability to study the derivatives and to restrict the ordering of data. However, continuous data inherently has infinite dimensions, and for a long time series, FDA methods often suffer from high computational costs. The analysis problem becomes even more challenging when updating the FDA results for continuously arriving data. In this paper, we present a visual analytics approach for monitoring and reviewing time series data streamed from a hardware system with a focus on identifying outliers by using FDA. To perform FDA while addressing the computational problem, we introduce new incremental and progressive algorithms that promptly generate the magnitude-shape (MS) plot, which conveys both the functional magnitude and shape outlyingness of time series data. In addition, by using an MS plot in conjunction with an FDA version of principal component analysis, we enhance the analyst's ability to investigate the visually-identified outliers. We illustrate the effectiveness of our approach with two use scenarios using real-world datasets. The resulting tool is evaluated by industry experts using real-world streaming datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源